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Abstract
We study the transmission coefficient and thermal conductivity for acoustic
phonons crossing a T-shaped quantum waveguide at low enough temperatures
by use of the scattering-matrix method. Our results show that relatively small
changes in the stub length and width can induce strong variations in the phonon
transmission and thermal conductivity. Compared with the electron case in
such a structure, acoustic phonon transmission and thermal conductivity exhibit
some novel and interesting features. The phonon transmission coefficients and
thermal conductivity can be artificially controlled by adjusting the parameters
of the proposed microstructure.

1. Introduction

Great technological advances in nanoscale lithography and atom-layer epitaxy enable us to
obtain various semiconductor nanostructures within which the wavelength or the coherence
length of the electron is comparable to or larger than the structure feature size. During the last
two decades, electronic transport properties in nanostructures have attracted much attention,
especially since the discovery of the quantized conductance phenomenon [1]. One of the most
important problems in mesoscopic physics is the understanding of the size effect on the electron
transport in quasi-one-dimensional nanostructures. It has been demonstrated that the electronic
and optical properties can be engineered to a high degree of precision in quantum structures by
using quantum size effects on electrons. This is called bandgap engineering. Because of their
novel physical properties in comparison with bulk materials and the potential applications in
new devices, a large amount of experimental [2–4] and theoretical [5–8] research on ballistic
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Figure 1. The structure of a T-shaped quantum waveguide.

electron transport in nanostructures with various configurations has been reported over the past
few years.

In contrast, little attention has been devoted to the study of phonon thermal conductivity
in nanostructures. Thermal conductivity is one of the most important parameters of a
semiconductor nanostructure, and it plays a critical role in controlling the performance
and stability of nanometre devices. It was not until recently that studies of heat transport
associated with phonons in nanostructures have arisen,because for easily fabricated devices the
wavelength of a typical thermal phonon becomes comparable to the dimension of the thermal
pathway at accessible low temperatures. Several groups [9–11] have derived expressions of
thermal conductance for ballistic phonon transport at low enough temperatures in an ideal
elastic beam, and found that the thermal conductance at low temperatures is dominated by
the lowest modes with zero cutoff frequency and is quantized in a universal unit, π2k2

BT/3h,
analogous to the well-known 2e2/h electronic conductance quantum. These predictions have
been verified experimentally [12]. The effect of surface roughness on the universal thermal
conductance in a dielectric quantum wire at low temperatures has also been investigated [13].
The phonon thermal conductance properties in various kinds of nanostructures such as thin
films [14], quantum wells [15], superlattices [16–19], nanowires [20–25], one-dimensional
glass [26], and nanotubes [27] are now starting to be reported.

Motivated by these works, in this paper we investigate the phonon heat transport in a
T-shaped quantum waveguide structure, schematically shown in figure 1. The structure is
assumed to be infinite in the longitudinal direction, while the transverse arm (stub) is finite. To
our best knowledge, several previous studies on the system mainly focus on the properties of
electron transport [28–30]. Many interesting electronic transmission features, such as resonant
transmission and resonant reflection, were revealed in the structure. Such a behaviour is due
to quantum interference which dominates the ballistic transport regime. These studies also
showed that relatively small changes in the stub length can induce strong variations in the
electron transmission across the structure. This kind of structure has the potential application
to act as a quantum device that may exhibit the proposed quantum transistor effect. It is natural
to think whether one can control phonons for the desired thermal properties by adjusting the
stub length and other structural parameters, and whether there is an analogy between phonon
thermal transmission and electronic transmission in the T-shaped structure. The main purpose
of this paper is to answer these questions, which have not been studied theoretically and
experimentally up to now. For the structure depicted in figure 1, there exist three types of
acoustic modes: the longitudinal polarized P mode, the vertically polarized SV mode, and
the horizontally polarized shear SH mode. Their polarization directions are along the x ,
y, and z directions, respectively. Previously, Wang et al [31] theoretically investigated the
band structure and the transmission spectrum of an acoustic wave in a periodically stubbed
waveguide by using the transfer-matrix method. Numerically, however, they presented the
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band structure and transmission spectrum of the out-of-plane (SH) mode only under the rigid
boundary condition. By using the scattering-matrix method [7, 8, 32] and considering the
stress-free boundary condition, in the present paper we calculate the phonon transmission
coefficients and thermal conductivity in the T-shaped quantum waveguide, where all of the
modes (SH,P, and SV modes) are considered.

This paper is organized as follows. Section 2 gives a brief description of the model and the
formulae used in calculations. The calculated results are presented in section 3 with analysis.
Finally, a summary is made in section 4.

2. Model and formalism

The structure of a T-shaped quantum waveguide is sketched in figure 1. The main part of the
device is a uniform waveguide of the transverse dimensionwI, on either side of which is a stub.
We label the longitudinal dimension of the stub as bII and its transverse dimension (wII −wI).
Regions I and III are the leads of the device. We assume that the temperatures in regions I and
III are T1 and T2, respectively; and the temperature difference δT (δT = T1 − T2 > 0) between
region I and region III is small. So we can adopt the mean temperature T (T = (T1 + T2)/2)
as the temperature of regions I and III in our calculations. In the practically three-dimensional
case, if regions I, II and III have the same thickness, which is small with respect to the other
dimensions and also to the wavelength of the elastic waves, there is no mixing of the z mode
and a two-dimensional calculation is adequate [9–11, 33].

Considering imperfect coupling at stub-I and stub-III junctions, the thermal conductivity
is given by [9, 33]

K = h̄2

kBT 2

∑
m

1

2π

∫ ∞

ωm

τm(ω)
ω2eβh̄ω

(eβh̄ω − 1)2
dω, (1)

where τm(ω) is the energy transmission coefficient from mode m of region I at frequency ω
across all the interfaces into the modes of region III. A central issue in predicting the thermal
conductivity is then to calculate the transmission coefficient, τm(ω).

In this paper, we employ the isotropic elastic theory to calculate the transmission coefficient
of the acoustic phonon [34]. Under this condition, the phonon modes polarized in the x–y plane
are decoupled from the horizontally polarized shear SH mode. With the SH mode incident
into the waveguide, only a single wave-type (SH) can exist, as expounded in the elasticity
textbook by Graff [34]. When the P mode transports into the waveguide, the reflection at the
interfaces may lead to the mode conversion, namely its reflection wave and the transmission
wave may contain both P and SV modes. For the SV mode incidence, the situation is similar.
Then mixing between the P mode and the SV mode will happen.

First, we consider the simplest case for an SH mode incidence at low enough temperatures.
The displacement field function satisfies the scalar potential equation

∂2ψ

∂ t2
− v2

SH∇2ψ = 0, (2)

where the SH wave velocity vSH is related to the mass density ρ and elastic stiffness constant
C44,

v2
SH = C44/ρ. (3)

The stress-free boundary condition at the edges requires that n̂ · ∇ψ = 0, with n̂ the normal to
the edge. For the structure depicted in figure 1, the solution to equation (2) in region ξ (regions
I, II, and III) can be expressed as
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ψξ (x, y) =
N∑

n=0

[Aξneikξn (x−xξ ) + Bξ
n e−ikξn (x−xξ )]φξn (y), (4)

where xξ is the reference coordinate along the x direction for region ξ ; kξn can be expressed in
terms of incident phonon frequencyω, the SH wave velocity vξSH and the transverse dimension
wξ of region ξ by the energy conservation condition,

ω2 = kξn
2
v
ξ 2

SH +
n2π2v

ξ 2

SH

w2
ξ

; (5)

φ
ξ
n (y) represents the transverse wavefunction of acoustic mode n in region ξ ,

φξn (y) =




√
2

wξ
cos

nπ

wξ
y (n �= 0)√

1

wξ
(n = 0).

(6)

In principle, the sum over n in equation (4) includes all propagating modes and evanescent
modes (imaginary kξn). However, in the real calculations,we take all the propagating modes and
a limited number of evanescent modes into account to meet the desired precision. Employing
boundary matching (the displacementψ and the stress c44∂ψ/∂x are continuous at the interface
of regions I and II (x = 0) and the interface of regions II and III (x = d)), we obtain the
equations for the coefficients in equation (4). Rewriting the resulting equations in the form of
a matrix, we can derive the transmission coefficient, τm , by the scattering matrix method (for
details see [36]).

We now turn to consider the case of P wave incidence. Our work focuses on the acoustic
phonon thermal transport at low enough temperatures, where only a few of lowest modes can
be excited and most of the contribution to the thermal conductivity comes from the zero mode.
In this case, the interconversion of P and SV modes is very small. Thus, we adopt the mixed
boundary condition [34] to solve the phonon transport problem. The basic elasticity equations
can be resolved by scalar (�) and vector (Hz) potential equations [34]. If conditions of plane
strain hold in the z direction, we have uz = ∂/∂z = 0, and

ux = ∂�

∂x
+
∂Hz

∂y
, (7)

uy = ∂�

∂y
− ∂Hz

∂x
, (8)

where ux = ux(x, y, t) and uy = uy(x, y, t). Further, we have

∇2� = 1

v2
L

∂2�

∂ t2
, ∇2 Hz = 1

v2
SV

∂2 Hz

∂ t2
, (9)

where vL = √
c11/ρ and vSV = √

c44/ρ are the velocities of the P wave and the SV
wave, respectively. The mixed boundary conditions considered here can be expressed by
uy = Txy = Tzy = 0 at the edges, where Txy and Tzy are the stress tensors that can be found
in the elasticity textbook [34]. The displacements in different regions ξ (ξ = I, II, or III) can
be expressed as

uξx(x, y) =
N∑

m=0

{
(P+

ξmeikξlm (x−xξ ) − P−
ξme−ikξlm (x−xξ ))(ikI

lm)χ
ξ
m(y)

+ (T +
ξmeikξtm (x−xξ ) + T −

ξme−ikξtm (x−xξ ))

(
i
nπ

wξ

)
χξm(y)

}
, (10)



Acoustic phonon transport through a T-shaped quantum waveguide 5053

and

uξy(x, y) =
N∑

m=0

{
(P+

ξmeikξlm (x−xξ ) + P−
ξme−ikξlm (x−xξ ))

(
−mπ

wξ

)
ηξm(y)

+ (T +
ξmeikξtm (x−xξ ) − T −

ξme−ikξtm (x−xξ ))kξtmη
ξ
m(y)

}
, (11)

where

χξm(y) =




√
2

wξ
cos

(
mπ

wξ
y

)
(m �= 0)√

1

wξ
(m = 0),

(12)

ηξm(y) =




√
2

wξ
sin

(
mπ

wξ
y

)
(m �= 0)√

1

wξ
(m = 0),

(13)

and

ω2 = (kξ(l,t)m)
2v
ξ 2

P,SV +
m2π2v

ξ 2

P,SV

w2
ξ

. (14)

Note that the sum over m in equations (10) and (11) includes all propagating modes and a
limited number of evanescent modes to meet the desired precision. The boundary conditions
at the interfaces (x = 0, bII) are now given by

uI(II)
x = uII(III)

x , (15)

uI(II)
y = uII(III)

y , (16)

c11∂uI(II)
x /∂x + c12∂uI(II)

y /∂y = c11∂uII(III)
x /∂x + c12∂uII(III)

y /∂y, (17)

∂uI(II)
x /∂y + ∂uI(II)

y /∂x = ∂uII(III)
x /∂y + ∂uII(III)

y /∂x . (18)

Using the scattering matrix method, we can obtain the transmission coefficient. Note that the
formulae mentioned above about an incident P mode are valid for the case of a SV mode
incident.

In the calculations, we will employ those values of dielectric constants and density of
GaAs referred to [36]: C11(GaAs) = 12.21 (1010 N m−2), C44(GaAs) = 5.99 (1010 N m−2),
and ρ(GaAs) = 5317.6 (kg m−3).

3. Numerical results and discussion

First, we discuss the lowest SH acoustic mode incident into the structure depicted in figure 1. It
is a character of the acoustic waves that the zero mode with cutoff frequencyω = 0 (transversal
index n = 0 in equations (5) and (6)) can propagate through the structure,which is substantially
different from the case of electronic transport [28]. This is due to the fact that the acoustic
phonon satisfies the stress-free boundary condition, whereas the electron satisfies the rigid
boundary condition. For electronic transport, the threshold energy of the lowest mode is
positive. That is to say that when the Fermi energy of the electron is lower than the threshold
energy, the electron cannot propagate through the structure, and the electron transmission
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Figure 2. Transmission coefficient versus the lengthwII and the incident phonon frequency ω/�SH
for the T-shaped acoustic waveguide structure withwI = 10 nm, where� = ωn+1−ωn = πvSH/wI
(vSH is the acoustic wave velocity in GaAs) represents the splitting of the cutoff frequency between
the (n + 1)th mode and the nth mode in the quantum main waveguide. (a) For bII = 10 nm; (b) for
bII = 12 nm.

coefficient is zero. As far as the acoustic phonon is concerned, we find from figure 2 that the
transmission coefficients approach unity as ω → 0, which indicates that the transmission is
not influenced by the stub for an incident acoustic phonon with ω → 0. We also find from
figure 2 that for an acoustic phonon with any incident frequency the transmission coefficients
approach unity at wII = 10 nm. This is owing to the fact that for the case of wII = 10 nm
the stub vanishes and the structure reverts to being a uniform waveguide. From figure 2(a),
it can be seen that, for a given frequency, the transmission exhibits a periodic pattern as a
function of wII. Figure 2(b) shows the transmission coefficient versus ω/�SH and wII for
bII = 12 nm > wI. With the increase of the frequency ω/�SH, the periodic pattern of the
transmission coefficient is destroyed. This can be well understood. Increasing the stub width
bII leads to a lowering of the cutoff frequency of the propagating wave along the stub. Thus,
more than one transverse mode can exist in the stub. These modes will couple with the incident
modes. In general, the more that modes couple with the incident modes in the stub, then the
more complex the transmission spectra. This is the reason why figure 2(b) displays a distorted
transmission pattern.

To see more clearly the dependence of the transmission coefficients on the stub length,
we show the transmission coefficient as a function of wII for different frequencies in figure 3.
We find that a relatively small change in wII can induce dramatic changes in the transmission
for a wide range of frequencies and appropriate choice of dimensions. When only the lowest
mode with transversal index n = 0 exists in the stub, the transmission spectra present periodic
behaviour and the period is one half of the wavelength. It is interesting to note that similar
phenomena are observed in electronic transmission [28]. It is known that the propagation
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Figure 3. The transmission coefficient as a function of the stub lengthwII, for different frequencies
in figure 2: the dot–dashed, dotted, and solid curves in (a) and (b) correspond to ω/�SH = 0.2,
0.5, and 0.9 in figures 2(a), (b), respectively.

wave and reflected wave with same wavenumber, k =
√
ω2/v2 − n2π2/b2

II, in the stub will
couple together and form a standing wave inside the stub. The wave reflected from the stub
will couple with the wave in the main waveguide. When the phase shift between the incident
wave in the main waveguide and the reflected wave from the stub is just equal to 2nπ , the
transmission in the main waveguide will be reinforced and τ = 1; while the phase shift is
(2n +1)π , the transmission coefficient, τ , is zero. Consequently, a periodic oscillation appears
in the transmission spectra and the period, �wII, of the oscillation can be obtained from
2k�wII = 2π , namely �wII = π/k = λ/2. This is confirmed by figure 3. These results
could be very useful for the design of phonon devices.

Now we investigate the transmission character of P wave incidence. Figure 4 shows some
new transmission characters, different from those in figure 2, due to the mode conversion and
mode mixing effect. Zero transmission only occurs at 0 < ω/�P < 0.7 and at the frequency
range only the zero modes exist in the waveguide. At frequencyω = 0.7�P, where the first SV
mode starts to be excited, there is a rapid decrease in transmission coefficient. From figure 4,
we find that when bII � 7 nm the transmission spectra still exhibit a quasi-periodic pattern as
a function of wII through the explored frequency scope. However, there are more resonance
transmission peaks in figure 4(a) than in 2(a), which indicates that the mode mixing effect can
reduce the resonance period. When bII > 7 nm, the periodicity is destroyed for the higher
frequency (see figure 4(b)). We also find that when only zero modes are available in the stub,
the transmission spectra of P wave will change periodically with the length of the stub; while
more than one kind of mode exists in the stub, the periodicity will be destroyed, similar to
the case of the SH wave. It is known that the vibration frequency of the acoustic phonon is
very small at very low temperatures, and only a small amount of mode conversion can occur
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Figure 4. Transmission coefficient versus the length wII and the incident phonon frequency ω/�P
for the T-shaped acoustic waveguide structure with wI = 10 nm, where� = ωn+1 −ωn = πvP/wI
(vP is the acoustic wave velocity in GaAs) represents the splitting of the cutoff frequency between
the (n + 1)th mode and the nth mode in the quantum main waveguide. (a) For bII = 7 nm; (b) for
bII = 10 nm.

at each interface. So the quasi-period transmission is not essentially destroyed by the mode
mixing effect. This also indicates that it is reasonable for us to solve the phonon transmission
by adopting a mode mixed boundary condition.

Now we turn to investigate the acoustic phonon thermal conductivity in the T-shaped
waveguide structure. At very low temperatures, zero mode thermal transport is dominant. The
mode mixing effect on thermal conductivity is small. Our calculations also show that at a
low temperature the thermal conductivity of the SH wave has similar features to those of the
P wave. We give the thermal conductivity of p wave incidence considering mode mixing as
follows.

Figure 5 shows the thermal conductivity divided by temperature reduced by the zero-
temperature universal π2k2

B/3h as a function of the reduced temperature kBT/h̄�P. As seen
from figure 5, for the given temperature range, the reduced thermal conductivity K/T is
dominated by the first few acoustic modes, especially the zero acoustic mode. When T
approaches zero, only the zero mode can be excited and thus only the zero mode contributes
to the thermal conductivity. Comparing curves (b) and (c) with (d), the reduced thermal
conductivity of mode 1 or 2 increases with increasing temperature, while that of the zero
mode seems to be insensitive to the temperature except at the very low temperatures regime
where it rapidly decreases with increasing temperature. The dramatic change of the thermal
conductivity of the zero mode at very low temperatures is considered to be the result of the
resonance coupling of the zero mode in the main wire and the zero mode of the stub,which leads
to the lower transmission coefficient for the given parameters. Correspondingly, a decrease
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B
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Figure 5. Thermal conductivity
divided by temperature, K/T , which
is reduced by the zero-temperature
universal value π2k2

B/3h, as a function
of the reduced temperature kBT/h̄�P.
Here, we take wI = bII = 10 nm, and
wII = 20 nm. Curve (a) corresponds to
the total conductivity, and curves (b)–
(d) correspond to the conductivity of
mode 0, 1, and 2, respectively.

in the reduced total thermal conductivity appears. Moreover, it is worth pointing out that the
reduced total thermal conductivity increases linearly with temperature.

In figure 6, we envisage the effect of the stub width on the reduced total thermal
conductivity K/T . Figure 6 shows that with the increase of the stub width bII, the reduced
thermal conductivity shifts down. This can be understood easily. The larger the value of
bII, the more transverse modes are available in the stub, and the stronger the scattering to the
transmission. Consequently, the transmission coefficient and thermal conductivity decrease.
Therefore, we can control the transmission characteristics by adjusting the transversal modes in
the stub, namely by changing the stub width bII. This appears to be important for applications
in devices. In figure 7, we explore the influence ofwII on the reduced total thermal conductivity
K/T . It is clearly seen from curve (a) that no reduction in the thermal transport occurs, and
a plateau at the universal value π2k2

B/3h appears at low temperature regime. This is due to
the fact that the T-shaped structure reverts to a uniform waveguide structure, in which no
scattering happens for ballistic transport in such a uniform waveguide. The forming of the
plateau further shows that the reduced thermal conductivity of zero mode is insensitive to
the temperature. With the increase of the stub length, the reduced total thermal conductivity
decreases noticeably, which indicates that we may adjust the thermal conductivity by changing
the stub length.

4. Summary

In this paper, we have presented a numerical calculation of the phonon transmission and thermal
conductivity in a T-shaped waveguide structure. We observe some novel and interesting
characteristics for acoustic phonon transmission and thermal conductivity in the structure,
substantially different from the case of electronic transport. The stress-free boundary condition
of an acoustic phonon leads to the propagation of the zero mode, and when only the zero mode
is available in the stub, the transmission spectra will change periodically with the length of
the stub. However, while more than one mode exists in the stub, the periodicity will be
destroyed. The thermal conductivity is not zero when T → 0. Moreover, the reduced thermal
conductivity of the excited acoustic modes increases with temperature significantly, while that
of the zero mode seems to be insensitive to temperature except at the very low temperature
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Figure 6. The thermal conductivity
divided by temperature reduced by the
zero-temperature universal π2k2

B/3h as
a function of the reduced temperature
kBT/h̄�P for different bII. Curves (a),
(b), and (c) correspond to bII = 5, 10,
and 15 nm, respectively. Here, we take
wI = 10 nm, and wII = 20 nm.
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Figure 7. The thermal conductivity
divided by temperature reduced by the
zero-temperature universal π2k2

B/3h as
a function of the reduced temperature
kBT/h̄�P for different wII. Curves (a),
(b), and (c) correspond to wII = 10, 12,
and 14 nm, respectively. Here, we take
wI = 10 nm, and bII = 10 nm.

regime where it rapidly decreases with the increase of temperature. These results show that
the transmission probabilities and thermal conductivity for acoustic phonons are sensitive to
the structural parameters. It is suggested that adjusting the structural parameters is an effective
way to control the transmission properties and the thermal conductivities of structures to match
practical requirements in devices.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant
Nos. 10104010 and 10325415), the National High Technology Research and Development
Program of China (Grant No 2002AA311153), the Ministry of Education of China, and by the
Chinese Academy of Sciences.



Acoustic phonon transport through a T-shaped quantum waveguide 5059

References

[1] Van Wee B J, van Houten H, Beenakker C W J, Williamson J G, Kouwenhoven L P, van der Marel D and
Foxon C T 1998 Phys. Rev. Lett. 60 848

[2] Wu J C, Wybourne M N, Yindeepol W, Weisshaar A and Goodnick S M 1991 Appl. Phys. Lett. 59 102
[3] Hieke K and Ulfward M 2000 Phys. Rev. B 62 16727
[4] Worschech L, Xu H Q, Forchel A and Samuelson L 2001 Appl. Phys. Lett. 79 3287
[5] Szafer A and Stone A 1989 Phys. Rev. Lett. 62 300
[6] Leng M and Lent C S 1993 Phys. Rev. Lett. 71 137
[7] Sheng W D 1997 J. Phys.: Condens. Matter 9 8369
[8] Xu H Q 1995 Phys. Rev. B 52 5803

Xu H Q 2002 Appl. Phys. Lett. 80 853
[9] Rego L G C and Kirczenow G 1998 Phys. Rev. Lett. 81 232

[10] Angelescu D E, Cross M C and Roukes M L 1998 Superlatt. Microstruct. 23 673
[11] Blencowe M P 1999 Phys. Rev. B 59 4992
[12] Schwab K, Henriksen E A, Worlock J M and Roukes M L 2000 Nature 404 974
[13] Santamore D H and Cross M C 2001 Phys. Rev. Lett. 87 115502

Santamore D H and Cross M C 2001 Phys. Rev. B 63 184306
[14] Philip J, Hess P, Feygelson T, Butler J E, Chattopadhyay S, Chen K H and Chen L C 2003 J. Appl. Phys. 93

2164
[15] Balandin A and Wang K L 1998 Phys. Rev. B 58 1544
[16] Lee S M, Cahill D G and Venkatasubramanian R 1997 Appl. Phys. Lett. 70 2957
[17] Chen G 1998 Phys. Rev. B 57 14958
[18] Bies W E, Radtke R J and Ehrenreich H 2000 J. Appl. Phys. 88 1498
[19] Simkin M V and Mahan G D 2000 Phys. Rev. Lett. 84 927
[20] Glavin B A 2001 Phys. Rev. Lett. 86 4318
[21] Balandin A 2000 Phys. Low-Dimens. Struct. 1/2 1
[22] Volz S, Lemonnier D and Saulnier J B 2001 Microstruct. Thermophys. Eng. 5 191
[23] Zou J and Balandin A 2001 J. Appl. Phys. 89 2932
[24] Chen G 2000 Int. J. Thermal Sci. 39 471
[25] Chen G and Zeng T 2001 Microstruct. Thermophys. Eng. 5 71
[26] Leitner D M 2001 Phys. Rev. B 64 094201
[27] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
[28] Soles F, Macuucci M, Ravaioli U and Hess K 1989 Appl. Phys. Lett. 54 350

Soles F, Macuucci M, Ravaioli U and Hess K 1989 J. Appl. Phys. 66 3892
[29] Weisshaar A, Lary J, Goodnick S M and Tripathi V K 1989 Appl. Phys. Lett. 55 2114
[30] Wu H, Sprung D W L, Martorell J and Klarsfeld S 1991 Phys. Rev. B 44 6351
[31] Wang X F, Kushwaha M S and Vasilopoulos P 2001 Phys. Rev. B 65 035107
[32] Tamura H and Ando T 1991 Phys. Rev. B 44 1792
[33] Cross M C and Lifshitz R 2001 Phys. Rev. B 64 085324
[34] Graff K 1991 Wave Motion in Elastic Solids (New York: Dover)
[35] Li W X, Chen K Q, Duan W H, Wu J and Gu B L 2003 J. Phys. D: Appl. Phys. 36 3027
[36] Chen K-Q, Wang X-H and Gu B-Y 2000 Phys. Rev. B 61 12075


